Supplement 1 | Supplement 2 | Supplement 3    
  Supplement 1  
Gene expression during the yeast cell cycle.
  Download the expression levels of 30 yeast genes.
  Microarray image of 30 yeast genes. Each row reprsents a gene and each column represents a time point. Red areas indicate an increase in mRNA abundance while green area indicates a decrease in mRNA abundance with respect to the control.
Table 1: Gene regulations identified in the time-series expression data of yeast cell cycle. Underlined entries denote the regulations determined by experimental methods, and italicized entries denote the regulations implied by previous studies.

1. Amon, A., Tyers, M., Futcher, B., Nasmyth, K.: Mechanism that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74(6), 993--1007 (1993)

2. Dirick, L., Bohm, T., Nasmyth, K.: Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisae. Embo. J. 14(19), 4803--4813 (1993)

3. Tyers, M., Tokima, G., Futcher, B.: Comparison of the Saccaromyces cerevisae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. Embo. J. 12, 1955--1968 (1993)

4. Schwob, E., Nasmyth, K.: CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 1160--1175 (1993)

5. Althoefer, H., Schleiffer, A., Wassmann, K., Nordheim, A., Ammerer, G.: Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae. Mol Cell Biol. 15, 5917--5928 (1995)

6. Andrews, B., Measday, V.: The cyclin family of budding yeast: abundant use of a good idea. Trends Genet. 14, 2, 66--72 (1998)

7. Dohrmann, P.R., Bulter, G., Tamai, K., Dorland, S., Green, J.R., Thiele, D.J., Stillman, D.J.: Parallel pathways of gene regulation: homologues regulators SWI5 and ACE2 differentially control transcription of HO and chitinase. Genes Dev. 6(1), 93--104 (1992)

8. Nash, P., Tang, X., Orlicky, S., Chen, Q., Gertler, F.B., Mendenhall, M.D., Sicheri, F., Pawson, T., Tyers, M.: Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 51--521 (2001)

9. Visintin R., Stegmeier F., Amon A.: The role of the Polo Kinase Cdc5 in controlling Cdc 14 Localization. MBoC 14, 11, 4486--4498 (2003)

10. Yuste-Rojas M., Cross FR.: Mutations in CDC14 result in high sensitivity to cyclin gene dosage in Saccharomyces cerevisiae. Molecular and General Genetics 263, 60-72, 2000

11. Siegmund, R.F., Nasmyth, K.A.: The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol Cell Biol. 16, 6, 2647--2655 (1996)

12. Healy AM., Zolnierowicz S., Stapleton AE, Goebl M., DePaoli-Roach AA., Pringle JR: CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B submit of mammalian type 2A protein phosphatase. Mol. Cell Biol. 11(11), 5767-5780, 1991

13. Smolka MB., Albuquerque CP., Chen SH., Zhou HL.: Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. PNAS 104(25), 10364-10369, 2007






Copyright: Biocomputing Lab. All rights reserved. Visited:
Biocomputing Lab, School of Computer Science and Engineering, Inha University.
Incheon, 402-751, South Korea. Phone: +82-32-8607388, Fax: +82-32-8634386